
⚙️
DevOps & CI/CD Essentials
Cheatsheet
📘 Overview
A concise yet comprehensive cheatsheet covering the core DevOps
ecosystem — from containerization to continuous delivery. Designed to help
learners, engineers, and architects quickly recall the key concepts,
commands, and workflows that make modern infrastructure tick.

🧠 Structure
Organized into six essential sections:

1. Core DevOps Concepts

2. Containers & Docker

3. Kubernetes Basics

4. CI/CD Pipelines

5. GitHub Actions Overview

6. Monitoring & Observability

🔹 Core DevOps Concepts
DevOps Philosophy: collaboration between dev & ops for faster, reliable
delivery.

Key Pillars: automation, CI/CD, observability, IaC, scalability, feedback
loops.

CI vs CD:

Continuous Integration → merge & test code frequently.

DevOps & CI/CD Essentials Cheatsheet 1

Continuous Delivery/Deployment → automatically push tested builds to
production.

Infrastructure as Code (IaC): automate infra provisioning using code
(Terraform, CloudFormation, Ansible).

Blue-Green & Canary Deployments: strategies for safe rollouts and testing
in production.

🔹 Containers & Docker
Why Containers? Portable, lightweight, isolated environments.

Dockerfile Essentials:

FROM python:3.10
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD ["python", "main.py"]

Common Commands:

docker build -t app . → build image

docker run -p 8000:8000 app → run container

docker ps → list running containers

Volumes & Networks: for persistent storage and inter-container
communication.

Docker Compose: multi-container orchestration with a single YAML.

🔹 Kubernetes Basics
Core Objects: Pod, Deployment, Service, Namespace, ConfigMap, Secret.

Architecture: Master Node (API Server, Scheduler, Controller) + Worker
Nodes (Kubelet, Kube Proxy).

Declarative Management: define desired state in YAML files.

Common Commands: kubectl get pods , kubectl apply -f deployment.yaml , kubectl logs pod-
name

DevOps & CI/CD Essentials Cheatsheet 2

Scaling: kubectl scale deployment app --replicas=3

Helm Charts: package Kubernetes apps for reusability and versioning.

🔹 CI/CD Pipeline Flow
Goal: automate build → test → deploy → monitor.

Typical Stages:

1. Source: code pushed to repo triggers pipeline.

2. Build: compile/test artifacts (e.g., Docker image).

3. Test: run unit/integration tests automatically.

4. Deploy: push to staging or production.

5. Monitor: track errors, latency, and user impact.

Example Pipeline (Conceptual):

Code Commit → CI Trigger → Build → Test → Deploy → Notify

Rollback Mechanism: automated reversion to previous stable version on
failure.

🔹 GitHub Actions Overview
Purpose: automate workflows directly in GitHub repos.

Key Components:

workflow.yml : defines triggers (push, PR, schedule)

jobs & steps: run tasks sequentially or in parallel

runners: hosted or self-hosted compute agents

Sample workflow:

name: CI Pipeline
on: [push]
jobs:
 build:
 runs-on: ubuntu-latest

DevOps & CI/CD Essentials Cheatsheet 3

 steps:
 - uses: actions/checkout@v3
 - name: Install dependencies
 run: pip install -r requirements.txt
 - name: Run tests
 run: pytest

Secrets & Environments: store tokens and credentials securely.

🔹 Monitoring & Observability
Monitoring vs Observability:

Monitoring = collect metrics (CPU, latency, errors).

Observability = ability to understand system state via logs, metrics,
traces.

Common Tools:

Prometheus + Grafana → metrics visualization

ELK Stack → centralized logging (Elasticsearch, Logstash, Kibana)

Jaeger / OpenTelemetry → distributed tracing

Alerting: integrate with Slack, PagerDuty for proactive responses.

🎯 Takeaway
A compact guide to help you grasp, recall, and apply the essential DevOps and
CI/CD practices — ideal for learners, engineers, and interview prep alike.

DevOps & CI/CD Essentials Cheatsheet 4

